按CNC数控车床的运动轨迹进行分类
(1)点位控制数控车床加工。这类数控车床加工的数控装置只能控制车床移动部件从一个位置准确地移动到另一个位置,即仅控制行程终点的坐标值,在移动过程中不进行任何切削加工,至于两相关点之间的移动速度及路线则取决于生产率。为了在准确定位的基础上有尽可能高的生产率,所以两相关点之间的移动先是以快速移动到接近新的位置,然后降速 1-3 级,使之慢速趋近定位点,以保证其定位精度。
(2)点位直线控制数控车床加工。这类数控车床加工时,不仅要控制两相关点之间的位置,还要控制两相关点之间的移动速度和路线。其路线一般都由和各轴线平行的直线段组成。它和点位控制数控车床加工的区别在于:当车床的移动部件移动时,可以沿一个坐标轴的方向(一般可以沿45°斜线进行切削,但不能沿任意斜率的直线切削)进行切削加工,而且其辅助功能比点位控制的数控车床多,例如,要增加主轴转速控制、循环进给加工、刀具选择等功能。
(3)轮廓控制数控车床加工。这类数控车床加工的控制装置能够同时对两个或两个以上的坐标轴进行连续控制。加工时不仅要控制起点和终点,还要控制整个加工过程中每点的速度和位置,使数控车床加工出符合图纸要求的复杂形状零件。它的辅助功能亦比较齐全。
按伺服系统的控制方式进行分类
(1)开环控制数控车床加工。在开环控制中,数控车床加工没有检测反馈装置。数控装置发出信号的流程是单向的,所以不存在系统稳定性问题。也正是由于信号的单向流程,它对数控车床移动部件的实际位置不作检验,所以数控车床加工精度不高,其精度主要取决于伺服系统的性能。 工作过程是: 输入的数据经过数控装置运算分配出指令脉冲,通过伺服机构(伺服元件常为步进电机)使被控工作台移动。
(2)闭环控制数控车床加工。由于开环控制精度达不到精密数控车床和大型数控车床的要求,所以必须检测它的实际工作位置,为此,在开环控制数控车床上增加检测反馈装置,在加工中时刻检测数控车床移动部件的位置,使之和数控装置所要求的位置相符合,以期达到很高的加工精度。
(3)开环补偿型数控车床加工。将开环控制数控车床加工与闭环控制数控车床加工的特点有选择地集中起来,可以组成混合控制的方案。大型数控车床加工,需要很高的进给速度和返回速度,又需要相当高的精度。如果只采用全闭环的控制,数控车床传动链和工作台全部置于控制环节中,因素十分复杂,尽管安装调试多经周折,仍然困难重重。为了避开这些矛盾,可以采用混合控制方式